Robert L. West

Dr. Robert L. West is associate professor in charge of the Carleton Cognitive Modeling Lab (CCM). He is cross-appointed to both the Psychology Department and the Institute of Cognitive Science at Carleton University, Ottawa, Ontario, Canada.

Contact:

robert_west@carleton.ca

Collaborations:

Joint Publications:

Leibovitz, D. P. & West, R. L. (2013) (Full 6 page paper). Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University.

Leibovitz, D. P. & West, R. L. (2013) (Full 6 page paper). Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University.

Leibovitz, D. P. & West, R. L. (2013) Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. Invited Talk.

Leibovitz, D. P. & West, R. L. (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. Poster Presentation.

West, R. L., & Leibovitz, D. P. (2012). Understanding each other: Defining a conceptual space for cognitive modeling. 34th annual meeting of the Cognitive Science Society (CogSci 2012) (pp. 2535-2539). Sapporo, Japan.

West, R. L., & Leibovitz, D. P. (2012). Understanding each other: Defining a conceptual space for cognitive modeling. 34th annual meeting of the Cognitive Science Society (CogSci 2012). Sapporo, Japan. Poster Presentation.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012) (pp. 72-73). Berlin, Germany.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012). Berlin, Germany. Poster Presentation.

Cognitive Re-Use via Emergic Networks (poster)

Leibovitz, D. P., & West, R. L. (2012) Cognitive Re-Use via Emergic Networks. Poster presented at the 11th International Conference on Cognitive Modeling (ICCM 2012), Berlin, Germany. pp. 1-12. [doi10.13140/RG.2.1.4218.2884]

Leibovitz & West (2012) Cognitive Re-Use via Emergic Networks (ICCM Poster)Abstract: In this poster we introduce a new cognitive modeling system called Emergic Networks. The Emergic Network system is designed to facilitate functional, nonlinear decomposition with the aim of understanding how different neural systems can interact to produce specific instances of cognitive functionality. The first part of the paper briefly describes the motivation for the system and the second part briefly describes the system and provides a web location for downloading.

Links:

See also:

Cognitive Re-Use via Emergic Networks

Leibovitz, D. P., & West, R. L. (2012) Cognitive Re-Use via Emergic Networks. Proceedings of the 11th International Conference on Cognitive Modeling (ICCM 2012) (pp. 72-73). Berlin, Germany. [doi: 10.13140/RG.2.1.3562.9282] (pdf)

Leibovitz & West (2012) Cognitive Re-Use via Emergic Networks (ICCM Poster)Abstract: In this paper we introduce a new cognitive modeling system called Emergic Networks. The Emergic Network system is designed to facilitate functional, nonlinear decomposition with the aim of understanding how different neural systems can interact to produce specific instances of cognitive functionality. The first part of the paper briefly describes the motivation for the system and the second part briefly describes the system and provides a web location for downloading.

Emergic Network ExampleLinks:

See also:

Emergic Network

Leibovitz, D. P. (2011) Emergic Network. Published as open sourced code. Retrieved September 7, 2015 from http://emergic.upwize.com/?page_id=6.

Leibovitz, D. P.. (2016) Emergic. Published as open sourced code. Retrieved November 15, 2016 from http://pypi.python.org/pypi/Emergic.

Leibovitz, D. P.. (2016) Emergic. Published as open sourced code. Retrieved November 15, 2016 from http://github.com/dpleibovitz/Emergic.

Abstract: Here you can find tEmergic Network Examplehe software to run an Emergic Network (EN). Installation instructions are also included.

Related Publications:

Leibovitz, D. P. (2013). A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture (Doctoral dissertation). Carleton University. Retrieved from http://dpleibovitz.upwize.com/?p=189.

Leibovitz, D. P., & West, R. L. (2012) (Extended 2 page abstract). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012) (pp. 72-73). Berlin, Germany.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012). Berlin, Germany. Poster Presentation.

Links:

See also:

Changeons & Predictons

Leibovitz, D. P. (2010) Changeons & Predictons. Talk presented to the Complex Adaptive Systems Group at Carleton University, pp. 1-7, Ottawa, Ontario, Canada. [doi10.13140/RG.2.1.3972.5281]

Abstract: Taylor Series expansion leads to Newton’s Method of Divided Differences used in Babbage’s Difference Engine. However, errors accumulate beyond region of expansion. My recurrence relation does not have this problem.

Links:

Lilac Chaser Illusion and Virtual Eyeballs (talk)

Leibovitz, D. P. (2010) Lilac Chaser Illusion and Virtual Eyeballs. Talk presented at Carleton University, Ottawa, Canada. [doi: 10.13140/RG.2.1.2268.5923]

Lilac-ChaserAbstract: David Leibovitz will give a live demo of his research-in-progress and discuss the nature of his research and future plans. David will demonstrate a framework, whereby a Virtual Eye is looking at the Lilac Chaser visual illusion. Currently, the implementation has a minimal cognitive component, a set of photoreceptors for the fovea, and saccadic jitter for the eye.

Links:

Emergic Network (EN)

Emergic Network ExampleThe Emergic Network (EN) is an “artificial neural” network architecture that abandons traditional neural oversimplifications and facilitates an Emergic Approach to design that harnesses emergence by explicitly encoding the interactions among multiple flows of information.

Leibovitz (2012) Modelling visual processing via emergence (CSBBCS)Note: that while an Emergic Network unit can correspond to an actual neuron, the Emergic Network is not a network of neurons, and each unit can correspond to an arbitrary domain of analysis, as low as quantum mechanics if desired, up to social groupings. That is why “neural” is in quotes. Indeed a single unit is Turing complete and could simulate an entire artificial neural network.

The Emergic Network architecture, is described and housed within Wikimergic.

Related Publications:

See also: