A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Supplement

Leibovitz, D. P. (2013). A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Supplement, pp. xv-467. Carleton University. [doi10.13140/RG.2.1.4506.4161] (PDF)

Abstract: Leibovitz (2013) Thesis - SupplementThis is supplemental material for the eight cognitive models and forty two tests of a thesis named “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture”. This supplement contains detailed information about computational test subjects, stimuli, and results. The thesis contains extracts from the information contained herein. The models and tests are listed in the same order as in the thesis and with the same chapter/appendix identifiers. Continue reading

Successful Thesis Defenses – Well Done!

220px-Carleton_University_Logo.svgCongratulations to David Pierre Leibovitz, Sarra Ghazel and Tabish Ismail on their successful thesis defenses last week.

On Thursday January 10th, 2013, David Pierre Leibovitz successfully defended his Ph.D. thesis entitled A Unified Cognitive Model of Visual Filling-In. The Chair for his Defense was Dr. Pauline Rankin.  His External Examiner was Dr. Gary Cottrell from the University of California, San Diego and his Internal/External Examiner was Dr. Craig Leth Steenson.  The members of David’s Committee were Dr. Robert West, Dr. Andre Vellino and Dr. Robert Biddle.

On Friday January 11th, 2013,  Sarra Ghazel successfully defended her Ph.D. thesis entitled Cognitive Architectures in Morphological Processing:  Acquistion and Attrition.  The Chair for her Defense was Dr. Michel Gaulin.  Her External Examiner was Dr. Monika Schmid, University of Groningen, The Netherlands and her Internal External Examiner was Dr. Carmen Leblanc.  The members of Sarra’s committee were Dr. Laura Sabourin, Dr. Lefevre , Dr John Logan and Dr. Kumiko Murasugi.

On Friday January 11, 2013, Tabish Ismail successfully defended his M.Cog.Sc. thesis entitled Truth in Science.  The Chair for his defense was Dr. Deepthi Kamawar.  His Internal/External examiner was Dr. David Matheson.  The members of Tabish’s committee were Dr. Raj Singh, Dr Robert West and Dr. Eros Corazza.  We also wanted to congratulate Tabish as he now officially a Ph.D. Student within the Institute of Cognitive Science!

Congratulations once again to all of you!

Source:

Copied from original positing at

http://carleton.ca/ics/2013/successful-thesis-defenses-well-done/

PhD in Cognitive Science, Carleton University

icsIn 2013, David was awarded the degree of Doctor of Philosophy in Cognitive Science at Carleton University.

In January, he defended a thesis titled “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture“. His degree was conferred in May.

His thesis supervisor was Robert L. West.

Location

External Links:

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture [Thesis Defense Presentation]

Leibovitz, D. P. (2013) A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture [Thesis Defense Presentation], pp. 1-28. Carleton University. [doi: 10.13140/RG.2.1.2603.5687] (pdf)

Leibovitz (2012) Thesis IntroductionAbstract: Presented at the defense for a thesis titled “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture“.

Links:

See also:

Modelling visual processing via emergence

Leibovitz, D. P. (2012) Modelling visual processing via emergence. [Abstracts of the 2012 CSBBCS annual meeting]. Canadian Journal of Experimental Psychology, 66(4): 308–308. [abstracts doi10.1037/a0029409]

Leibovitz (2012) Modelling visual processing via emergence (CSBBCS)Abstract: A model of low level visual processing is outlined along with a demonstration of the numerous phenomena it unifies. Specifically – filling in, visual memory, image stability, color homogeneity, blind spot, temporal edge detection, eye blink – phenomena that would ordinarily be investigated under different sub fields and with disparate models. The model is based on the interaction between recurrence and eye motion. The model is built using the Emergic Network system, which is a new cognitive modeling system created for this project and others like it. Emergic Networks facilitate the exploration of how recurrent and distributed functions produce functional emergent effects. I will present an overview of the Emergic Network System and the simulation results for each phenomena it models.

Links:

See also:

Robert L. West

Dr. Robert L. West is associate professor in charge of the Carleton Cognitive Modeling Lab (CCM). He is cross-appointed to both the Psychology Department and the Institute of Cognitive Science at Carleton University, Ottawa, Ontario, Canada.

Contact:

robert_west@carleton.ca

Collaborations:

Joint Publications:

Leibovitz, D. P. & West, R. L. (2013) (Full 6 page paper). Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University.

Leibovitz, D. P. & West, R. L. (2013) (Full 6 page paper). Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University.

Leibovitz, D. P. & West, R. L. (2013) Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. Invited Talk.

Leibovitz, D. P. & West, R. L. (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. Poster Presentation.

West, R. L., & Leibovitz, D. P. (2012). Understanding each other: Defining a conceptual space for cognitive modeling. 34th annual meeting of the Cognitive Science Society (CogSci 2012) (pp. 2535-2539). Sapporo, Japan.

West, R. L., & Leibovitz, D. P. (2012). Understanding each other: Defining a conceptual space for cognitive modeling. 34th annual meeting of the Cognitive Science Society (CogSci 2012). Sapporo, Japan. Poster Presentation.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012) (pp. 72-73). Berlin, Germany.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012). Berlin, Germany. Poster Presentation.

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Animated Test Results

Leibovitz, D. P. (2012) A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Animated Test Results. Retrieved September 7, 2015 from http://emergic.upwize.com/?page_id=26.

Abstract: Animated results for the cognitive models within a thesis named “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture“.

Links:

See also: