Emergic Modeling (Lecture)

Leibovitz, D. P. (2018) Emergic Modeling. Lecture first given to the “PSYC 4700B/5700: Cognitive Modeling” class, Carleton University, pp  1-40, Ottawa, Ontario, Canada. [doi: 10.13140/RG.2.2.30001.28002] (pdf)

Abstract: Unifying modeling and its philosophizing.

Documents:

Presented:

  • 2018-01-29: PSYC 4700B/5700: Cognitive Modeling
  • 2018-02-02: CGSC 3201: Empirical Issues in Cognitive Science

Links:

Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing (Poster)

Leibovitz & West (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing (POSTER)Leibovitz, D. P. & West, R. L. (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. Poster presented to the the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. [doi: 10.13140/RG.2.1.2849.2002] (pdf)

Abstract: Accounting for dendritic+ processing facilitates richer neural encoding schemes that can ultimately lead to simpler networks while improving their neurobiological plausibility. Dendritic+ processing is an example of several modeling tradeoffs: how local complexifications can improve global simplicity, and how functional network circuitry can be traded against representational circuitry. This is demonstrated within a model of narrow slit viewing based on an Emergic Network architecture (Leibovitz & West, 2013).

Keywords: Dendritic processing; Emergic Cognitive Model (ECM); Emergic Network (EN); Flowcentric; Neural coding; Representation; Slit Viewing; Unified Modeling.

Links:

See also:

 

Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing (Invited Talk)

Leibovitz, D. P. & West, R. L. (2013) Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. Invited talk presented to the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. [doi10.13140/RG.2.1.2169.2647] (PPTX; PDF)

Abstract: In this talk, we describe a Leibovitz & West (2013) Emergence of Border & Surface Completion (Talk)model of narrow slit viewing that deals with both spatial and temporal completion for borders and surfaces. The model is based on functionality derived from the dynamic interactions of a neural model. We contrast this model with FACADE, which models vision using neural models of modules corresponding to functionality.

Links:

See also:

 

Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing

Leibovitz, D. P. & West, R. L. (2013) Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013),  (pp. 1-6). [doi: 10.13140/RG.2.1.1513.9044] (PDF)

Leibovitz & West (2013) Emergence of Border & Surface Completion (Talk)Abstract: In this paper, we describe a model of narrow slit viewing that deals with both spatial and temporal completion for borders and surfaces. The model is based on functionality derived from the dynamic interactions of a neural model. We contrast this model with FACADE, which models vision using neural models of modules corresponding to functionality.

Keywords: Border completion; Emergence; Emergic Cognitive Model (ECM); FACADE; Flowcentric; Slit Viewing; Spatial; Surface completion; Temporal; Unified Modeling.

Links:

See also:

Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing

Leibovitz, D. P. & West, R. L. (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), pp. 1-6. [doi10.13140/RG.2.1.3242.4165] (PDF)

Leibovitz & West (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit ViewingAbstract: Accounting for dendritic+ processing facilitates richer neural encoding schemes that can ultimately lead to simpler networks while improving their neurobiological plausibility. Dendritic+ processing is an example of several modeling tradeoffs: how local complexifications can improve global simplicity, and how functional network circuitry can be traded against representational circuitry. This is demonstrated within a model of narrow slit viewing based on an Emergic Network architecture (Leibovitz & West, 2012).

Keywords: Dendritic processing; Emergic Cognitive Model (ECM); Emergic Network (EN); Flowcentric; Neural coding; Representation; Slit Viewing; Unified Modeling.

Links:

See also:

 

Abnormal Science for Abnormal Perception: A Case for Theoretical Cognitive Science via a Case Study of Narrow Slit Viewing

Leibovitz, D. P. (2013+) Abnormal Science for Abnormal Perception: A Case for Theoretical Cognitive Science via a Case Study of Narrow Slit Viewing. Working Paper, pp. 1-7. [doi10.13140/RG.2.1.3731.8889] (PDF)

Leibovitz (2013+) Abnormal Science for Abnormal PerceptionAbstract: Anorthoscopic perception is good perception under abnormal viewing conditions. One such scenario is when a wider view of the world is perceived than can be sensed at any one time when looking through a narrow slit. Thus, narrow slit viewing and aperture viewing are common nicknames for this phenomenon. Somehow, visual information must be integrated across viewpoints and one fundamental issue is whether this occurs at the finer-grained locus of sensation, or the larger-grained locus of perception. This paper supports a fine-grained sensory model (Leibovitz, 2013a).

The wider view of abnormal perception will also be used as a metaphor to the unified view of theoretical science as compared to the experimental branch. While analyzing, modeling and theorizing are epistemic activities of both branches, their goals and hence nature will differ. This paper will summarize such differences and introduce theoretical cognitive science via a case study. One surprising difference is that abnormal or holistic analysis requires not only greater epistemic breadth, but must also induce finer ontological grains.

An epistemic problem for holistic analysis is in determining the wider scope applicable for the study of a target phenomenon. This is where theory can inform data. In this paper, we use an ontological, fine-grained and unified theory of cognition (Leibovitz, 2013b) to scope out the relevant neurobiological structures and related phenomena that bear on the target phenomenon of anorthoscopic perception.

Finally, this paper constitutes the theoretical analysis of alternative theories and phenomenon in support for our own theory of narrow slit viewing (Leibovitz, 2013a). In essence, we exemplify abnormal science over abnormal perception, i.e., of theoretical cognitive science for anorthoscopic perception.

Keywords: Abnormal philosophy; Abnormal science; Anorthoscopic; Blink; Epistemology; Experimental; Perception; Aperture Viewing; Emergic Cognitive Model (ECM); Emergic Network (EN); Flowcentric; Foveal Tritanopia; Fusion; Integration; Ontology; Neurocentric; Retinal Painting; Retinotopic; Segmentation; Sensation; Slit Viewing; Spatiotopic; Theoretical; Unified Modeling.

Links:

Flowcentric Model of Narrow Slit Viewing in an Irregular Retina with Blind Spots, Eye Motion, Blinks and no Smear: Base Model Changes, Test Details and Test Results

Leibovitz, D. P. (2013) Flowcentric Model of Narrow Slit Viewing in an Irregular Retina with Blind Spots, Eye Motion, Blinks and no Smear: Base Model Changes, Test Details and Test Results. Working Paper, pp. 1-7. [doi10.13140/RG.2.1.2224.5606] (PDF)

Abstract: A computational model of narrow slit viewing is tested under conditions involving a heterogeneous retina with blind spots, while undergoing eye motion and eye blink. The model demonstrates spatial and temporal forms of filling-in, image stability and lack of smear. At a neural level, the model exemplifies flowcentric behaviour.

The model is based on the Emergic Cognitive Model (ECM) (Leibovitz, 2013a, 2013b). ECM is a unified cognitive model and this paper describe the non-cognitive changes made to support and highlight anorthoscopic behaviour. The model is tested against a simplified stimulus as well as an ecological one in order to demonstrate specific model abilities. Additionally, this paper specifies the testing details and provides the simulation results with minimal interpretation as they are further analyzed by Leibovitz (2013c, 2013d).

Keywords: Anorthoscopic; Blink; Aperture Viewing; Emergic Cognitive Model (ECM); Flowcentric; Foveal Tritanopia; Segmentation; Slit Viewing; Unified Modeling.

Continue reading

WikiECM

WikiECM is a 2nd level WikiSilo that houses the Emergic Cognitive Model (or ECM). It sits under Wikimergic, which sits under Wikisilo in the WikiSilo hierarchy. Because WikiECM is a WikiSilo (open to all), it counts as a product (with or without the ECM code).

WikiECM has more detail and examples of use, it adds to the epistemology of ECM. Also, the historizing of alternatives adds impact of ECM.

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture (Doctoral dissertation)

Leibovitz, D. P. (2013). A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture. (Order No. NR94549, Carleton University (Canada)). ProQuest Dissertations and Theses, pp. xxxii-459. Retrieved from http://search.proquest.com/docview/1437103134?accountid=9894. (1437103134). [doi10.13140/RG.2.1.2681.6482] (PDF)

Keywords (ProQuest): Biological sciences; Applied sciences; Psychology; Emergic network architecture; Unified cognitive model; Visual filling-in

Leibovitz (2013) ThesisAbstract: The Emergic Cognitive Model (ECM) is a unified computational model of visual filling-in based on the Emergic Network architecture. The Emergic Network was designed to help realize systems undergoing continuous change. In this thesis, eight different filling-in phenomena are demonstrated under a regime of continuous eye movement (and under static eye conditions as well). Continue reading

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Supplement

Leibovitz, D. P. (2013). A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Supplement, pp. xv-467. Carleton University. [doi10.13140/RG.2.1.4506.4161] (PDF)

Abstract: Leibovitz (2013) Thesis - SupplementThis is supplemental material for the eight cognitive models and forty two tests of a thesis named “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture”. This supplement contains detailed information about computational test subjects, stimuli, and results. The thesis contains extracts from the information contained herein. The models and tests are listed in the same order as in the thesis and with the same chapter/appendix identifiers. Continue reading

Successful Thesis Defenses – Well Done!

220px-Carleton_University_Logo.svgCongratulations to David Pierre Leibovitz, Sarra Ghazel and Tabish Ismail on their successful thesis defenses last week.

On Thursday January 10th, 2013, David Pierre Leibovitz successfully defended his Ph.D. thesis entitled A Unified Cognitive Model of Visual Filling-In. The Chair for his Defense was Dr. Pauline Rankin.  His External Examiner was Dr. Gary Cottrell from the University of California, San Diego and his Internal/External Examiner was Dr. Craig Leth Steenson.  The members of David’s Committee were Dr. Robert West, Dr. Andre Vellino and Dr. Robert Biddle.

On Friday January 11th, 2013,  Sarra Ghazel successfully defended her Ph.D. thesis entitled Cognitive Architectures in Morphological Processing:  Acquistion and Attrition.  The Chair for her Defense was Dr. Michel Gaulin.  Her External Examiner was Dr. Monika Schmid, University of Groningen, The Netherlands and her Internal External Examiner was Dr. Carmen Leblanc.  The members of Sarra’s committee were Dr. Laura Sabourin, Dr. Lefevre , Dr John Logan and Dr. Kumiko Murasugi.

On Friday January 11, 2013, Tabish Ismail successfully defended his M.Cog.Sc. thesis entitled Truth in Science.  The Chair for his defense was Dr. Deepthi Kamawar.  His Internal/External examiner was Dr. David Matheson.  The members of Tabish’s committee were Dr. Raj Singh, Dr Robert West and Dr. Eros Corazza.  We also wanted to congratulate Tabish as he now officially a Ph.D. Student within the Institute of Cognitive Science!

Congratulations once again to all of you!

Source:

Copied from original positing at

http://carleton.ca/ics/2013/successful-thesis-defenses-well-done/

PhD in Cognitive Science, Carleton University

icsIn 2013, David was awarded the degree of Doctor of Philosophy in Cognitive Science at Carleton University.

In January, he defended a thesis titled “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture“. His degree was conferred in May.

His thesis supervisor was Robert L. West.

Location

External Links:

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture [Thesis Defense Presentation]

Leibovitz, D. P. (2013) A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture [Thesis Defense Presentation], pp. 1-28. Carleton University. [doi: 10.13140/RG.2.1.2603.5687] (pdf)

Leibovitz (2012) Thesis IntroductionAbstract: Presented at the defense for a thesis titled “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture“.

Links:

See also:

Modelling visual processing via emergence

Leibovitz, D. P. (2012) Modelling visual processing via emergence. [Abstracts of the 2012 CSBBCS annual meeting]. Canadian Journal of Experimental Psychology, 66(4): 308–308. [abstracts doi10.1037/a0029409]

Leibovitz (2012) Modelling visual processing via emergence (CSBBCS)Abstract: A model of low level visual processing is outlined along with a demonstration of the numerous phenomena it unifies. Specifically – filling in, visual memory, image stability, color homogeneity, blind spot, temporal edge detection, eye blink – phenomena that would ordinarily be investigated under different sub fields and with disparate models. The model is based on the interaction between recurrence and eye motion. The model is built using the Emergic Network system, which is a new cognitive modeling system created for this project and others like it. Emergic Networks facilitate the exploration of how recurrent and distributed functions produce functional emergent effects. I will present an overview of the Emergic Network System and the simulation results for each phenomena it models.

Links:

See also:

Robert L. West

Dr. Robert L. West is associate professor in charge of the Carleton Cognitive Modeling Lab (CCM). He is cross-appointed to both the Psychology Department and the Institute of Cognitive Science at Carleton University, Ottawa, Ontario, Canada.

Contact:

robert_west@carleton.ca

Collaborations:

Joint Publications:

Leibovitz, D. P. & West, R. L. (2013) (Full 6 page paper). Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University.

Leibovitz, D. P. & West, R. L. (2013) (Full 6 page paper). Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. In R. West & T. Stewart (eds.), Proceedings of the 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University.

Leibovitz, D. P. & West, R. L. (2013) Emergence of Border & Surface Completion (both Spatial and Temporal) in a Flowcentric Model of Narrow Slit Viewing. 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. Invited Talk.

Leibovitz, D. P. & West, R. L. (2013) Dendritic+ Processing in an Emergic Network Model of Narrow Slit Viewing. 12th International Conference on Cognitive Modeling (ICCM 2013), Ottawa: Carleton University. Poster Presentation.

West, R. L., & Leibovitz, D. P. (2012). Understanding each other: Defining a conceptual space for cognitive modeling. 34th annual meeting of the Cognitive Science Society (CogSci 2012) (pp. 2535-2539). Sapporo, Japan.

West, R. L., & Leibovitz, D. P. (2012). Understanding each other: Defining a conceptual space for cognitive modeling. 34th annual meeting of the Cognitive Science Society (CogSci 2012). Sapporo, Japan. Poster Presentation.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012) (pp. 72-73). Berlin, Germany.

Leibovitz, D. P., & West, R. L. (2012). Cognitive Re-Use via Emergic Networks. 11th International Conference on Cognitive Modeling (ICCM 2012). Berlin, Germany. Poster Presentation.

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Animated Test Results

Leibovitz, D. P. (2012) A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture – Animated Test Results. Retrieved September 7, 2015 from http://emergic.upwize.com/?page_id=26.

Abstract: Animated results for the cognitive models within a thesis named “A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture“.

Links:

See also:

Modelling visual processing via emergence (Invited Talk)

Leibovitz, D. P. (2012) Modelling visual processing via emergence. Invited talk presented at the 22nd Annual Meeting of the Canadian Society for Brain, Behaviour and Cognitive Science (CSBBCS) in the Computational understanding of Cognition Symposium. pp. 1-43, Queen’s University, Kingston, Ontario, Canada. [doi10.13140/RG.2.1.5141.9368]

Leibovitz (2012) Modelling visual processing via emergence (CSBBCS) (Cover)Abstract: A model of low level visual processing is outlined along with a demonstration of the numerous phenomena it unifies. Specifically – filling in, visual memory, image stability, color homogeneity, blind spot, temporal edge detection, eye blink – phenomena that would ordinarily be investigated under different sub fields and with disparate models. The model is based on the interaction between recurrence and eye motion. The model is built using the Emergic Network system, which is a new cognitive modeling system created for this project and others like it. Emergic Networks facilitate the exploration of how recurrent and distributed functions produce functional emergent effects. I will present an overview of the Emergic Network System and the simulation results for each phenomena it models.

Links:

See also:

Emergence in the Mind’s Eye (talk)

Leibovitz, D. P. (2011) Emergence in the Mind’s Eye. Talk presented for the ICS Colloquium series at Carleton University, pp. 1-46, Ottawa, Ontario, Canada. [doi10.13140/RG.2.1.1842.6088]

Leibovitz (2011) Emergence in the Mind's EyeAbstract: A cognitive model of visual processing will be presented. Two cognitive functions will interact to produce many visual phenomena in the mind’s eye. Then again, emergence itself is an illusion

Links:

Lilac Chaser Illusion and Virtual Eyeballs (talk)

Leibovitz, D. P. (2010) Lilac Chaser Illusion and Virtual Eyeballs. Talk presented at Carleton University, Ottawa, Canada. [doi: 10.13140/RG.2.1.2268.5923]

Lilac-ChaserAbstract: David Leibovitz will give a live demo of his research-in-progress and discuss the nature of his research and future plans. David will demonstrate a framework, whereby a Virtual Eye is looking at the Lilac Chaser visual illusion. Currently, the implementation has a minimal cognitive component, a set of photoreceptors for the fovea, and saccadic jitter for the eye.

Links:

Emergic Cognitive Model

Emergic Cognitive Model

The Emergic Cognitive Model (or ECM) is a unifying cognitive model that develops genetically, i.e., based on development parameters or modeling DNA. ECM advances a single powerful theory of human cognition for explaining a variety of emergent phenomena described across experimental paradigms and academic disciplines

The unifying model has no free parameters, and its emergent behavior is commensurate with expectations in its developmental differences, as well as its interactions across a variety of environments, stimuli and situations.

Unifying modeling is guided by the principles of the Emergic Approach for progressing science. Thus, ECM is based on the Emergic Network (a computational architecture), is embodied and developed within virtual agents (persons), and situated within environments (worlds) of an Emergic Cognitive System, for non-representational real-time information processing.

Jittering retina of the Emergic Cognitive Model

Currently, the Emergic Cognitive Model supports low-level aspects of dynamic visual processing. It has a biological realistic retina (with a blind spot, a random placement of photoreceptors that grow in size beyond the fovea), and supports eye movement (including jitter) without motion blur, blinking, and object motion.

Related Projects:

Publications:

External links

Carleton University

carleton university@ottawa.caCarleton University is a comprehensive public university located in Ottawa, Ontario, Canada. It was attended by David during 1993 & 20032013.

Education

Research

Select Publications

Collaborators

Products

Teaching

Location

External links

Ottawa, Ontario, Canada

Ottawa Panorama by Wikicanadia

Ottawa Panorama by Wikicanadia

Ottawa is the national capital of Canada and lies within the province of Ontario. David has lived there since 1988.

Research

Education

Collaborators

Organizations

External links